Data Processing
Understanding and configuring data processing options
🔄 Processing Parameters
- CGM Gap Handling: How many missing readings to interpolate
- Insulin Classification: Thresholds for bolus vs basal
- Data Validation: Maximum valid insulin doses
⚙️ Configuration Examples
| # Conservative gap filling (15 mins max)
python -m src.cli data.sqlite --interpolation-limit 3
# Higher insulin thresholds
python -m src.cli data.sqlite --bolus-limit 12.0 --max-dose 25.0
# Strict validation
python -m src.cli data.sqlite --bolus-limit 6.0 --max-dose 12.0
|
📊 Output Structure
- complete_dataset/: Full processed data with applied parameters
- monthly/: Split data maintaining processing settings
- processing_notes.json: Configuration and quality metrics
Example Output Structure:
| data/exports
├── 2023-06-03_to_2024-09-28_complete
│ ├── aligned_data.csv
│ ├── carbs.csv
│ ├── cgm.csv
│ ├── insulin.csv
│ ├── notes.csv
│ └── processing_notes.json
└── monthly
├── 2023-06
│ ├── aligned_data.csv
│ ├── carbs.csv
│ ├── cgm.csv
│ ├── insulin.csv
│ ├── notes.csv
│ └── processing_notes.json
├── 2023-07
│ ├── aligned_data.csv
│ ├── carbs.csv
│ ├── cgm.csv
│ ├── insulin.csv
│ ├── notes.csv
│ └── processing_notes.json
|